Enhancing the utility of complex-valued functional magnetic resonance imaging detection of neurobiological processes through postacquisition estimation and correction of dynamic B(0) errors and motion.

نویسندگان

  • Andrew D Hahn
  • Andrew S Nencka
  • Daniel B Rowe
چکیده

Functional magnetic resonance imaging (fMRI) time series analysis is typically performed using only the magnitude portion of the data. The phase information remains unused largely due to its sensitivity to temporal variations in the magnetic field unrelated to the functional response of interest. These phase changes are commonly the result of physiologic processes such as breathing or motion either inside or outside the imaging field of view. As a result, although the functional phase response carries pertinent physiological information concerning the vasculature, one aspect of which is the location of large draining veins, the full hemodynamic phase response is understudied and is poorly understood, especially in comparison with the magnitude response. It is likely that the magnitude and phase contain disjoint information, which could be used in tandem to better characterize functional hemodynamics. In this work, simulated and human fMRI experimental data are used to demonstrate how statistical analysis of complex-valued fMRI time series can be problematic, and how robust analysis using these powerful and flexible complex-valued statistics is possible through postprocessing with correction for dynamic magnetic field fluctuations in conjunction with estimated motion parameters. These techniques require no special pulse sequence modifications and can be applied to any complex-valued echo planar imaging data set. This analysis shows that the phase component appears to contain information complementary to that in the magnitude and that processing and analysis techniques are available to investigate it in a robust and flexible manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P28: Neuroimaging in Anxiety Disorders

In recent years, the development of neuroimaging techniques such as high-resolution magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), positron emission tomography (PET), or single photon emission tomography (SPECT) has promoted the identification of structural and functional characteristics underlying mental disorders to a great extent. In anxiety disorders, recent...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

Effect of Bias in Contrast Agent Concentration Measurement on Estimated Pharmacokinetic Parameters in Brain Dynamic Contrast-Enhanced Magnetic Resonance Imaging Studies

Introduction: Pharmacokinetic (PK) modeling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely applied in tumor diagnosis and treatment evaluation. Precision analysis of the estimated PK parameters is essential when they are used as a measure for therapy evaluation or treatment planning. In this study, the accuracy of PK parameters in brain DCE...

متن کامل

Pseudo-CT Generation from Magnetic Resonance Imaging by fuzzy look up table algorithm

Introduction: Despite growing interest in the use of magnetic resonance imaging (MRI) in the external radiotherapy design process (RT), Computer Tomography (CT) remains a gold standard and is regarded as a basic imaging modality in radiotherapy. MRI shows the high contrast in soft tissues without any radiation exposure to patients. As a result, MRI is used in functional tissue ...

متن کامل

Dynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors

Background: Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective: The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human brain mapping

دوره 33 2  شماره 

صفحات  -

تاریخ انتشار 2012